


Optimizing Load Time in
Ignition Perspective



Casimir Smith

Project Engineer

DMC, Inc.

Elizabeth Reed

Senior Manager, SCADA and MES

DMC, Inc.



Types of Performance

Perceived 
Performance

Responsiveness Resource Usage

How long do pages 
feel to load

How long between user 
action and result

How much RAM or CPU 
is being used



So how do we prevent this from happening?



Improving Perceived Performance

Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Binding Efficiency

Format transform

Map transform

Expression transform

Script transform

Direct tag binding

Indirect tag binding

tag() expression

runScript() expression

Binding Efficiency Ranking Transform Efficiency Ranking



Binding Efficiency

Avoid use of tag() Instead, use multiple indirect tag bindings



Query Efficiency

● Always include a range limiter on queries that select from large tables

○ Time-based or count-based

● Avoid polling

○ Use a refresh button that calls refreshBinding() instead

● Use named queries with caching enabled

● Use database tools to troubleshoot query performance



Scripting Efficiency

● Don’t script unless you need to

● Avoid duplicating logic in a loop

● Use bulk tag reads instead of one at a time

Bulk tag reads are 

up to 10x faster



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Reduce Reflow and Repaint

● Reflow: recalculating position and geometry

○ Expensive process

● Repaint: changes that affect visibility, but not layout

● Avoid bindings that alter page layout



● Change a bound property to 
“persistent” to save the starting 
value instead of initializing to null.

● Use persistence to set starting 
layout.

● Use persistence to avoid red 
overlays on initial load.

Preset Layout with Persistence



● Avoid nesting more than 3 layers deep

● Pass in tag paths as parameters, then use 
indirect tag bindings

● Try both with-parent and after-parent 
loading

Nested Embedded Views



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Move Calculations to Gateway Scope

now() 
expression 

binding

run script in 
transform
to get data

write data to 
property

view load view load
cyclic gateway 

timer event

run script to 
get data

write data to 
tags

write data to 
property

read data from 
indirect tag 

binding



Move Calculations to Gateway Scope

Note: for both of these instances the 
“current” is a tag binding

Run Script on Screen: 
Slow Load

Precalculate Script Result: 
Instant Load

Average value 

– run script on 
a client screen

Average value 

– get cached 
result from tag



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Ignition Version

● If you are before 8.1.31, upgrade Ignition



Custom Lightweight Components

● Embed SVG graphics for cases with many repeated 
components

● Ignition Exchange has example gauges and charts

● Heavyweight components

○ XY Chart

○ Gauge & Pie Chart

○ Markdown



Heavyweight Gauge Component



Lightweight SVG Gauge



Advanced Techniques

Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Analyze Loading with DevTools

● You want to measure different 
variants against each other.

● You can’t figure out why your 
screen is still slow.

Hide Loading in Ignition

● You have optimized as much as 
possible, but still have pop-in.

● You want to improve page feel.

Advanced Techniques: When to Use



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Analyze Loading: Basic DevTools

● Chrome DevTools: F12 
or Ctrl+Shift+i

● Resize to test 
responsive design

● Throttle network speeds 
to exaggerate slow 
clients



Analyze Loading: Performance Monitor

Stop recording

Navigate and perform 
actions on your page

Start recording

Switch to “Performance” 
tab

Open Chrome DevTools



Analyze Loading: Performance Monitor



Analyze Loading: Performance Monitor

Timeline
see browser 
resource load 
over time

Screenshot

hover timeline 
to see page 
snapshot

Process Gauge
watch out for 
lots of scripting 
and rendering

Stack Trace
too complicated 
for us 



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Hide loading

Analyze loading



Hiding Loading

● Things don’t need to be fast, they just need to feel fast

● Some delays are unavoidable - remote tag provider bindings

● Strategies

○ Avoid overlay flickers with persistence

○ Hide with fade



Hiding Loading: Persistence

Gives the property a temporary value while waiting for 
the binding to load

Not Persistent – Red Overlays



Hiding Loading: Persistence

Gives the property a temporary value while waiting for 
the binding to load

Persistent – Defaults to 0



Hiding Loading: Fade

● Create fade style class that 
animates opacity from 0 to 1

● Create multiple classes with 
different delay intervals



Hiding Loading: Fade



Reduce amount of data and calculation

Reduce layout recalculations

Reduce initial load actions

Reduce heavyweight components

Fundamentals Advanced techniques

Summary

Hide loading

Analyze loading



Balance Performance vs Maintainability

● “Premature optimization is the root of all evil”

● Get user feedback, THEN consider 
optimizing

● Many performance boosts introduce custom 
or duplicate code

○ Maintainable code is always more 
important

1: Gather 
feedback

2: Analyze 
feedback

3: Act on 
insights



Contact Us

Elizabeth Reed
elizabeth.reed@dmcinfo.com

Casimir Smith
casimir.smith@dmcinfo.com







Production is Often Slower Than 
Development

HMI/tablet is slower 

than engineering PC
More clients accessing 

server at one time

More data to query 

against


	Slide 1
	Slide 2: Optimizing Load Time in Ignition Perspective
	Slide 3: Casimir Smith
	Slide 4: Types of Performance
	Slide 5: So how do we prevent this from happening?
	Slide 6: Improving Perceived Performance
	Slide 7
	Slide 8: Binding Efficiency
	Slide 9: Binding Efficiency
	Slide 10: Query Efficiency
	Slide 11: Scripting Efficiency
	Slide 12
	Slide 13: Reduce Reflow and Repaint
	Slide 14: Preset Layout with Persistence
	Slide 15: Nested Embedded Views
	Slide 16
	Slide 17: Move Calculations to Gateway Scope
	Slide 18: Move Calculations to Gateway Scope
	Slide 19
	Slide 20: Ignition Version
	Slide 21: Custom Lightweight Components
	Slide 22: Heavyweight Gauge Component
	Slide 23: Lightweight SVG Gauge
	Slide 24: Advanced Techniques
	Slide 25: Advanced Techniques: When to Use
	Slide 26
	Slide 27: Analyze Loading: Basic DevTools
	Slide 28: Analyze Loading: Performance Monitor
	Slide 29: Analyze Loading: Performance Monitor
	Slide 30: Analyze Loading: Performance Monitor
	Slide 31
	Slide 32: Hiding Loading
	Slide 33: Hiding Loading: Persistence
	Slide 34: Hiding Loading: Persistence
	Slide 35: Hiding Loading: Fade
	Slide 36: Hiding Loading: Fade
	Slide 37: Summary
	Slide 38: Balance Performance vs Maintainability
	Slide 39: Contact Us
	Slide 40
	Slide 41
	Slide 42: Production is Often Slower Than Development

